Zum Inhalt der Seite springen

Die „Innere Uhr“ regulieren

08.12.2021 CMFI News

Neu identifiziertes Sensorprotein beeinflusst Stoffwechsel in Cyanobakterien und Tag-Nacht-Rhythmus

Auch Cyanobakterien haben einen Tag-Nacht-Rhythmus: Der Stoffwechsel dieser ältesten Lebensformen der Erde passt sich dem Wechsel von Tag und Nacht an, einem sogenannten zirkadianen Rhythmus. Forschende der Universität Tübingen und des Max-Planck-Instituts für Entwicklungsbiologie sowie der Universitäten GöttingenRostock und Hannover haben nun erstmals entschlüsselt, welches Protein diese Anpassung reguliert. Versteht man die molekularen Grundlagen von solchen Prozessen, die mit der sogenannten „zirkadianen Uhr“ oszillieren, kann dies helfen, auch die „innere Uhr“ anderer Organismen zu verstehen, einschließlich des Menschen. Diese regelt nicht nur den Tag-Nacht-Rhythmus, sondern auch zahlreiche physiologische Prozesse, einschließlich unseres Stoffwechsels.

Dass Cyanobakterien ihren Stoffwechsel beim Übergang von Tag zu Nacht mit Hilfe der zirkadianen Uhr anpassen, war bereits bekannt. Während des Tages betreiben sie Photosynthese und speichern Kohlenstoffquellen in Form von Glykogen. Während der Nacht wird das Glykogen zur Energiegewinnung abgebaut, so dass die Cyanobakterien nächtliche Dunkelheitsperioden überleben können.

Dr. Khaled Selim und Professor Karl Forchhammer vom Interfakultären Institut für Mikrobiologie und Infektionsmedizin (IMIT) und dem Max-Planck-Institut für Entwicklungsbiologie und Projektgruppenleiter im Exzellenzcluster „Controlling Microbes to Fight Infections“ (CMFI) der Universität haben nun mit Kollegen zwei Verantwortliche für diesen Prozess identifiziert: Das Protein SbtB, das an der Regulierung der CO2-Aufnahme - ein für die Photosynthese wichtiger Prozess - beteiligt ist sowie den chemischen Botenstoff c-di-AMP. Das Botenmolekül c-di-AMP wird von fast allen lebenden Bakterien synthetisiert und dient dazu, die Bakterien über ihren internen und/oder externen aktuellen Zellstatus zu informieren. c-di-AMP leitet sich von dem bekannten Nukleotid Adenosintriphosphat (ATP) ab, welches der Grundbaustein der RNA ist. Die Forschenden um Dr. Selim und Prof. Forchhammer zeigten, dass der chemische Botenstoff c-di-AMP an der Reaktion von Bakterienzellen auf osmotischen Stress beteiligt ist und er somit auch auf den Tag-Nacht-Rhythmus über die Regulierung des Glykogenstoffwechsels einwirkt.

 

Es war bereits bekannt, dass SbtB die Kohlenstoffaufnahme regulieren kann. Dr. Selim und Kollegen haben nun gezeigt, dass es auch den Glykogenstoffwechsel reguliert, was auf eine umfassendere Rolle bei der Regulierung des zentralen Kohlenstoffstoffwechsels hindeutet. Wenn SbtB an das Nukleotid c-di-AMP gebunden ist, interagiert es mit einem wichtigen Enzym für die Glykogensynthese. Interessanterweise erreicht die Konzentration sowohl von c-di-AMP als auch von SbtB tagsüber ihren Höhepunkt und nachts ihr Minimum. Ohne die beiden Substanzen wären die Zellen nicht in der Lage, die Nacht zu überleben, da sie tagsüber nicht genügend Glykogenspeicher aufbauen können, so die Forscher. Dies deutet darauf hin, dass c-di-AMP und SbtB den Glykogenstoffwechsel im Rahmen des natürlichen Tag-Nacht-Rhythmus regulieren.

Die Forschenden gehen davon aus, dass das Verständnis der molekularen Mechanismen hinter diesem zentralen Regulator SbtB dazu dienen kann, den Kohlenstoffluss in Cyanobakterien zu manipulieren. Dies könnte die Herstellung nützlicher Produkte, wie beispielsweise des biologisch abbaubaren Kunststoffs PHB oder andere chemische Ausgangsstoffe effizienter und in industriellem Maßstab anwendbar machen.

Im größeren Kontext verbessern die Erkenntnisse nicht nur unser Verständnis der Verstoffwechselung von Kohlenstoff bei Cyanobakterien, sondern auch insgesamt der molekularen Grundlagen von Prozessen, die mit der zirkadianen Uhr wechselwirken. Dies hilft wiederum, den Tag-Nacht-Rhythmus anderer Organismen - inklusive des Menschen - zu erklären. „Eines Tages können wir dadurch vielleicht besser verstehen, warum uns beispielsweise Essen am Tag und Fasten in der Nacht vor Krankheiten wie Fettleibigkeit und Diabetes schützt“, erklärt Khaled Selim.

Publikation:

Selim KA, Haffner M, Burkhardt M, Mantovani O, Neumann N, Albrecht R, Seifert R, Krüger L, Stülke J, Hartmann MD, Hagemann M, Forchhammer K: Diurnal metabolic control in cyanobacteria requires perception of second messenger signaling molecule c-di-AMP by the carbon control protein SbtB. Science Advances 7: eabk0568. (2021) doi: 10.1126/sciadv.abk0568.

Kontakt

Dr. Khaled Selim
Universität Tübingen

Interfakultäres Institut für Mikrobiologie und Infektionsmedizin (IMIT) | Exzellenzcluster „Controlling Microbes to Fight Infections“ (CMFI)

Tel: +49 7071 29 74634
E-Mail: khaled.selim@uni-tuebingen.de

Pressekontakt

Leon Kokkoliadis
Medien- und Öffentlichkeitsarbeit

Tel: +49 7071 29-74707
E-Mail: leon.kokkoliadis@uni-tuebingen.de

Ähnliche Artikel

Entschlüsselung neuer Genfunktionen im menschlichen Darmmikrobiom
26.03.2024 – 26.03.2024 Entschlüsselung neuer Genfunktionen im menschlichen Darmmikrobiom CMFI News
Volkswagen Stiftung fördert Projekt zur Umwandlung von Abfallstoffen in neue Biomaterialien
14.02.2024 Volkswagen Stiftung fördert Projekt zur Umwandlung von Abfallstoffen in neue Biomaterialien CMFI News
Auf der Spur verborgener Mitglieder in Mikrobengemeinschaften
05.02.2024 Auf der Spur verborgener Mitglieder in Mikrobengemeinschaften CMFI News
Cholera-Erreger machtlos gegen eigenes Immunsystem
19.01.2024 Cholera-Erreger machtlos gegen eigenes Immunsystem Pressemitteilung
Neuartiger antibiotischer Wirkstoff aus menschlicher Nase
18.12.2023 Neuartiger antibiotischer Wirkstoff aus menschlicher Nase Pressemitteilung
Unraveling the Impact of Xenobiotics on Gut Microbiota: A High-Throughput Approach under Anaerobic Conditions
13.12.2023 Unraveling the Impact of Xenobiotics on Gut Microbiota: A High-Throughput Approach under Anaerobic Conditions In den Medien

Nature - Behind the paper

"Mikrobiom – Schlüssel zur Gesundheit?"
08.12.2023 "Mikrobiom – Schlüssel zur Gesundheit?" In den Medien

Planet Wissen

The Frankenstein molecule: resurrecting an ancient antibiotic to create antibiotics of the future
30.11.2023 The Frankenstein molecule: resurrecting an ancient antibiotic to create antibiotics of the future In den Medien

Nature - Behind the paper

Ein Antibiotikum auf Zeitreise
30.11.2023 Ein Antibiotikum auf Zeitreise Pressemitteilung
Welche Rolle spielen Darmbakterien bei der Krebsimmuntherapie?
23.11.2023 Welche Rolle spielen Darmbakterien bei der Krebsimmuntherapie? Pressemitteilung
Andreas Peschel zu Gast im Podcast "Zeitfragen" von Deutschlandfunk Kultur
16.11.2023 Andreas Peschel zu Gast im Podcast "Zeitfragen" von Deutschlandfunk Kultur In den Medien

Deutschlandfunk Kultur

"Wie unsere Nase unsere Immunantwort beeinflusst"
04.11.2023 "Wie unsere Nase unsere Immunantwort beeinflusst" In den Medien

radioeins/RBB